Thursday, April 30, 2015

Time-Vault

A Time-Vault is a fictional device or structure,used to preserve or store items for safe keeping,existing within the worlds of the Maveric Multiverse.These type of Time-Vaults have remained standard room sized vault,but contain such things as a Time-Space Jump Points.

Contents[hide]
1 Type One Time-Vault
2 Type Two Time-Vault
3 Historical usage
4 Type One Time-Vault
5 Type Two Time-Vault
6 Type Three Time-Vault
7 Features
8 History
9 Design
10 Manufacturing process
10.1 Panels
10.2 Door
10.3 Lock
10.4 Installation
11 Performance standards
12 Byproducts/waste
13 Future
14 References
15 Further reading
15.1 Books
15.2 Periodicals
16 External links

[[File:New_Genisis_Bunker_front_blue2onevbb.jpg|frame|new genisis bunker]]
_-VIKING-Battle-For-Asgard-PS3-_.jpg
TONY VINCENT Project_Time_Stalkers,Inc.jpg|Project Time-Stalkers,Inc.
[[File:Time_vault_FotoFlexer_Photoq1.jpg|thumb]]
A Time-Vault is a fictional device or structure,used to preserve or store items for safe keeping,existing within the worlds of the Maveric Multiverse.These type of Time-Vaults have remained standard room sized vault,but contain such things as a Time-Space Jump Points.
==Type One Time-Vault ==


A small'''bank vault''' (or '''strongroom''') is a secure space where money, valuables, records, and documents can be stored,outside of time and space. It is intended to protect their contents from theft, unauthorized use, fire, natural disasters, and other threats, just like a [[safe]]. But unlike safes, vaults are an integral part of the building within which they are built, using armored walls and a tightly fashioned door closed with a complex [[Lock (device)|lock]].Generally,they have size limitations,but act and function in a similar to small,scaled down [[New Genisis Bunkers]].The Vault itself was around three storeys high, with a large column running through the middle that was an extension of the fountain above; at its base lay the Zero-Point Generator,that provides continueous power for the vault ,with an emergency paragravity generator,that lighten the instellations overall weight. The Time-Vault had two means of access: an elevator  lift that moves into the upper levels,often disguised as a house or store front and four starwell that lead  entrance hidden in a tourism office.  the military base scenes in  and the booby-trapped abandoned warehouse scenes in "These type of Time-Vaults have remained standard multi room sized vault,but contain such things as prisoners section, a Time-Space Jump Points.




==Type Two Time-Vault==
A huge building ''' bank vault''' (or '''strongroom''') is a secure space where money, valuables, records, equiptment and documents can be stored, outside of time and space. It is intended to protect their contents from theft, unauthorized use, fire, natural disasters, and other threats, just like a [[safe]]. But unlike safes, vaults are an integral part of the building within which they are built, using armored walls and a tightly fashioned door closed with a complex [[Lock (device)|lock]].Generally, they have size limitations, but act and function in a similar to small, scaled down [[New Genesis Bunkers]],just like Type One Time-Vaults. The diffecences, Type Two Time-Vault also not apart of a building,but can built as the buildings themselves.


These Type Two Time-Vaults became sort scaled down version of[[New Genisis Bunkers]],to be used store more various items and equiptment,but to be uses a safehouse or bases of operations,for various groups or individuals.
===Other uses===Four Satellite Time-Vaults used during ''No Man's Land''.(clockwise from top left). Central Batcave (Robinson Park Reservoir), Batcave South (A boiler room beneath Paris Island), Northwest Batcave (a subbasement of Arkham Asylum), and Batcave East (Wayne Enterprises-owned oil refinery). Art by Stan Boch.]][[Image:Batcave South-Central.jpg|thumb|left|175px|Batcave South-Central (Old Gotham prototype subway station). From ''Batman: No Man's Land'' #0. Art by Greg Land.]]The Outsiders were, for a time, based out of a Batcave in [[Los Angeles]]. After [[Bane (comics)|Bane]]'s attack during the ''Knightfall'' story arc, Bruce Wayne swore that he'd never be caught unprepared to defend [[Gotham City]] ever again. When Dick Grayson assumed the Mantle of the Bat during the ''Prodigal'' storyline, Bruce established satellite Batcaves (most of which were not caves in the literal sense that the original one was) throughout the city on areas either owned by him, his company, or unknown or abandoned by the city, in the event that he needed a place to hide and/or resupply, which were pivotal during the ''No Man's Land'' storyline. One such Batcave was given to [[Cassandra Cain|Batgirl]], below a house owned by Bruce Wayne himself, during a point where her identity was compromised after she saved a man from rogue government agents, meaning that she could not walk around without a mask. The other satellite Batcaves introduced during ''No Man's Land'' were: *'''Central Batcave''': Located fifty feet below the bottom of Robinson Park Reservoir, it is accessible through a secret entrance at the foot of one of the Twelve Caesars statues at the north of the park. This safehouse was put out of commission by [[Poison Ivy (comics)|Poison Ivy]], her "Feraks", and [[Clayface]].''Batman: No Man's Land Secret Files'' #1 *'''Batcave South''': A boiler room of a derelict shipping yard on the docks across from Paris Island. This safehouse is accessible through a number of false manholes planted throughout Old Gotham streets. *'''Batcave South-Central''': Located in the Old Gotham prototype subway station, a four-block stretch of track sealed in 1896 and forgotten. *'''Northwest Batcave''': This safehouse is located in the subbasement of [[Arkham Asylum]]. Batman secretly stocked it with emergency rations, all-terrain vehicles, and battery-powered communication equipment. *'''Batcave East''': An abandoned oil refinery owned by Wayne Enterprises. It fell out of use during a gasoline crisis when the company moved all of its holdings offshore decades ago. *'''Arkham Island Batcave''': Over the years, Batman gathered supplies for a Batcave on Arkham Island, as a preemptive measure for any attack on the asylum. He finally utilized it during the events of the video game ''[[Batman: Arkham Asylum]]'', but it was for the most part destroyed by the Titan-powered Poison Ivy. It's also implied that Joker knew about, or at least suspected the existence of this cave, as he dispatched his henchmen into the sewers of Arkham to find it, most likely because Joker has been fighting Batman for so long and knows that he would have a contingency plan for just such an emergency. Another was introduced in 2002's ''[[Bruce Wayne: Fugitive|Fugitive]]'' story arc, this time in the form of an abandoned submarine. ====Bat Bunker====[[Image:BatBunker.jpg|180px|thumb|right|Bat Bunker in ''Batman and Robin'']]Under the [[Wayne Foundation]] building, there is a secret bunker. As of ''Batman'' #687, [[Dick Grayson]] has taken to using this as his "Batcave", stating that he wishes to embody the role of Batman in a way that is specific to him as well as getting closer to the action in the city. This is similar to the bunker seen in the 2008 film ''The Dark Knight''.  The bunker is as well-equipped as the original Batcave, including the Subway Rocket vehicle stationed beneath the bunker. 

'''safe house''' is, in a generic sense, a secret place for sanctuary or suitable to hide persons from the law, hostile actors or actions, or from retribution, threats or perceived danger.The [[Oxford English Dictionary]] defines it as: "a house in a secret location, used by spies or criminals in hiding." Oxford English Dictionary It may also be a [[metaphor]].

==Historical usage==
*  in the [[jargon]] of [[law enforcement agency|law enforcement]] and [[intelligence agency|intelligence]] agencies, is a secure location, suitable for hiding witnesses, agents or other persons perceived as being in danger


* a place where people may go to avoid [[prosecution]] of their activities by [[authority|authorities]].  [[Osama bin Laden's compound in Abbottabad]] has been described as a "safe house".


* a place where [[spy|undercover operatives]] may conduct clandestine observations or meet other operatives surreptitiously{{Cite news | author=Greg Miller | title= CIA used safe house to spy on bin Laden | url= http://www.post-gazette.com/pg/11127/1144836-82.stm | work=The Washington Post | date=7 May 2011 | accessdate=15 October 2012}}


* a location where a trusted adult or family or charity organization provides a [[wikt:safe haven|safe haven]] for victims of [[domestic abuse]] (see also: men and/or [[women's shelter]] or refuge)


* a home of a trusted person, family or organization where victims of war and/or persecution may take refuge, receive protection and/or live in secret


* [[Right of asylum]]


* [[Sanctuary#Sanctuary in medieval law|sanctuary in medieval law]]


* [[Sanctuary#Sanctuary in modern times|sanctuary in modern times]]


* [[Church asylum]]




Typically, the significance of safe houses is kept [[secret]] from all but a limited number of people, for the safety of those hidden within them.




Many religious institutions will allow one to obtain [[Sanctuary#Right of asylum|sanctuary]] within one's place of worship, and some governments respect and do not violate such sanctuary.




Safe houses were an integral part of the [[Underground Railroad]], the network of safe house locations that were used to assist slaves in escaping to the primarily northern free states in the 19th century United States. Some houses were marked with a statue of an African-American man holding a lantern, called "the Lantern Holder".{{cite news |url=http://www.usatoday.com/news/nation/2008-02-23-2269591966_x.htm |title=Man amasses black history treasure trove -  |accessdate=2010-05-28 |work=USA Today |first=Kathy |last=Matheson |date=2008-02-23}}{{cite book |title=I've Got a Home in Glory Land: A Lost Tale of the Underground Railroad|url=http://books.google.com/books?id=ANv1C6liU1QC|first1=Karolyn Smardz |last1=Frost  |place=New York |publisher=Farrar, Straus and Giroux |year=2007 |isbn=978-0-374-16481-2}}




Safe houses also provided a refuge for victims of [[Nazi]] persecution and for escaping [[prisoners of war]]. Victims, such as [[Anne Frank]] and her family, were harbored clandestinely for extended periods of time. Other Jewish victims hidden from the Germans were [[Philip Slier]] and his extended family and friends.{{cite book | last = Slier | first = Philip "Flip" | authorlink = | coauthors = Deborah Slier  | title = Hidden Letters | publisher = Star Bright Books | series = | volume =| edition = illustrated | year = 2008 | location = New York | pages = 10, 159, 160, 161 | url = | doi = | id = | isbn = 1887734880 | mr = | zbl = | jfm = }}




== See also ==


{{Portal|Law enforcement}}


*[[Right of asylum|Asylum]]


*[[Safe harbor]]


*[[Safe haven (disambiguation)]]


*[[Sanctuary cities]]


*[[Sanctuary movement]]




==References==


{{reflist}}




== Sources ==


* Slier, Philip "Flip" & Slier, Deborah. ''Hidden Letters: The Hidden Letters of Flip Slier''. Star Bright Books, 2008. ISBN 1887734880.




{{DEFAULTSORT:Safe House}}










==Type Three Time-Vault==




a kind of huge Time-Vault,used to secure space where money, valuables, records,equiptment and documents can be stored,outside of time and space,too dangerous to allowed out among the populas.




== '''Features''' ==




Separate security towers and administration building; main citadel (security staging areas, administrative offices); self-contained cells in subterranean levels, each cell has reconfigurable walls for differentiated accomodation; isolation pit/cells; self-contained nuclear power facility.




Several eons ago, the United Kingdoms of Atlantis tried to solve the problem of incarcerating superhuman criminals and extraterrestrial lifeforms,to dangerous to allowed freedom by creating the maximum security prison termed “the Vault.” It had many advantages over more conventional prisons, as it contained multiple subterranean levels, was constructed from near-impervious materials such as either Atlanteanor  steel, and used various power-dampening devices. An additional factor in the Vault’s early success was the fact that its location, deep within the Rocky Mountains of Colorado, was kept top secret from all but the most necessary personnel and government officials.


In the beginning, the Vault lived up to its expectations, becoming an effective internment for superhuman criminals. Most villains feared the Vault’s reputation as an “inescapable” prison, partly because it was so shrouded in secret. However, many would attempt to break out of the Vault, particularly Venom. His most notable attempted break-out occurred during the tenure of the warden Truman Marsh. Marsh had instituted a number of hard-line policies against the inmates, and Venom was able to recruit a veritable army in hopes of escaping. However, Marsh clamped down on the entire facility, setting a bomb to detonate rather than allow any to escape. The Avengers and Freedom Force combined their efforts to break into the prison, subdue the inmates, and defuse the bomb. Unfortunately, Marsh was killed by Venom in the process












{{Redirect|Strongroom|the 1962 British crime drama|Strongroom (film)}}




[[File:WinonaSavingsBankVault.JPG|thumb|300px|Large door to an old [[Diebold]] bank vault. On the right is the back side of the open door. To the right of the door's center are two linked lock mechanism boxes for the dual combination dials.  To the left of the door's center is a timelock with its four movements.]]




A '''bank vault''' (or '''strongroom''') is a secure space where money, valuables, records, and documents can be stored. It is intended to protect their contents from theft, unauthorized use, fire, natural disasters, and other threats, just like a [[safe]]. But unlike safes, vaults are an integral part of the building within which they are built, using armored walls and a tightly fashioned door closed with a complex [[Lock (device)|lock]].




Historically, strongrooms were built in the [[basement]] of a bank where the ceilings were [[Vault (architecture)|vaulted]], hence the name. Modern bank vaults typically contain many [[safe deposit box]]es, as well as places for teller cash drawers, and other valuable assets of the bank or its customers. They are also common in other buildings where valuables are kept such as post offices, grand hotels, rare book libraries and certain government ministries.




Vault technology developed in a type of arms race with bank robbers. As [[burglar]]s came up with new ways to break into vaults, vault makers found innovative ways to foil them. Modern vaults may be armed with a wide array of alarms and anti-theft devices. Some nineteenth and early twentieth century vaults were built so well that today they are almost impossible to destroy. These older vaults were typically made with [[Reinforced concrete|steel-reinforced concrete]]. The walls were usually at least 1 ft (0.3 m) thick, and the door itself was typically 3.5 ft (1.1 m) thick. Total weight ran into the hundreds of tons. Today vaults are made with thinner, lighter materials that, while still secure, are easier to dismantle than their earlier counterparts.




==History==


[[File:Bank vault 1901.jpg|thumb|left|200px|Strongroom from 1901]]




The need for secure storage stretches far back in time. The earliest known locks were made by the [[Ancient Egypt|Egyptians]]. [[Ancient Rome|Ancient Romans]] used a more sophisticated locking system, called [[warded lock]]s. Warded locks had special notches and grooves that made picking them more difficult. Lock technology advanced independently in ancient [[India]], [[Ancient Russia|Russia]], and [[History of China#Ancient China|China]], where the [[combination lock]] is thought to have originated. In the United States, most banks relied on small iron [[safe]]s fitted with a key lock up until the middle of the nineteenth century. After the [[California Gold Rush|Gold Rush]] of 1849, unsuccessful [[Prospecting|prospector]]s turned to robbing banks. The prospectors would often break into the bank using a pickax and hammer. The safe was usually small enough that the thief could get it out a window, and take it to a secluded spot to break it open.




Banks demanded more protection and safe makers responded by designing larger, heavier safes. Safes with a key lock were still vulnerable through the key hole, and bank robbers soon learned to blast off the door by pouring explosives in this opening. In 1861, inventor [[Linus Yale Jr.]] introduced the modern combination lock. Bankers quickly adopted [[Yale (company)|Yale]]'s lock for their safes, but bank robbers came up with several ways to get past the new invention. It was possible to use force to punch the combination lock through the door. Other experienced burglars learned to drill holes into the lock case and use mirrors to view the slots in the combination wheels inside the mechanism. A more direct approach was to simply kidnap the bank manager and force him to reveal the combination.




After the inventions of the combination lock, James Sargent—an employee of Yale—developed the "theft proof lock." This was a combination lock that worked on a timer. The vault or safe door could only be opened after a set number of hours had passed, thus a kidnapped bank employee could not open the lock in the middle of the night even under force. [[Time lock]]s became widespread at banks in the 1870s. This reduced the kidnappings, but set bank robbers to work again at prying or blasting open vaults. Thieves developed tools for forcing open a tiny crack between the vault door and frame. As the crack widened, the thieves levered the door open or poured in gunpowder and blasted it off. Vault makers responded with a series of stair-stepped grooves in the door frame so the door could not be levered open. But these grooves proved ideal for a new weapon: liquid [[nitroglycerin]]. Professional bank robbers learned to boil [[dynamite]] in a kettle of water and skim the nitroglycerin off the top. They could drip this volatile liquid into the door grooves and destroy the door. Vault makers subsequently redesigned their doors so they closed with a thick, smooth, tapered plug. The plug fit so tightly that there was no room for the nitroglycerin.




By the 1920s, most banks avoided using safes and instead turned to gigantic, heavy vaults with walls and doors several feet thick. These were meant to withstand not only robbers but also angry mobs and natural disasters. Despite the new security measures, these vaults were still vulnerable to yet another new invention, the [[cutting torch]]. Burning oxygen and [[acetylene]] gas at about {{convert|6000|°F|°C|-2}}, the torch could easily cut through steel. It was in use as early as 1907, but became widespread with World War I. Robbers used cutting torches in over 200 bank robberies in 1924 alone. Manufacturers learned to sandwich a copper alloy into vault doors. If heated, the high thermal conductivity of copper dissipates the heat to prevent melting or burning. After this design improvement, bank burglaries fell off and were far less common at the end of the 1920s than at the beginning of the decade.




Technology continues in the race with bank robbers, coming up with new devices such as [[heat sensor]]s, [[motion detector]]s, and alarms. Bank robbers have in turn developed even more technological tools to find ways around these systems. Although the number of bank robberies has been cut dramatically, they are still attempted.




Materials used in vaults and vault doors have changed as well. The earlier vaults had steel doors, but because these could easily be cut by torches, different materials were tried. Massive cast iron doors had more resistance to acetylene torches than steel. The modern preferred vault door material is actually the same concrete as used in the vault wall panels. It is usually clad in steel for cosmetic reasons.




==Design==


[[File:TIFF Image File0003.TIF|thumb|200px|Vault of a retail bank under demolition.]]


Bank vaults are built as custom orders. The vault is usually the first aspect of a new bank building to be designed and built. The manufacturing process begins with the design of the vault, and the rest of the bank is built around it. The vault manufacturer consults with the customer to determine factors such as the total vault size, desired shape, and location of the door. After the customer signs off on the design, the manufacturer configures the equipment to make the vault panels and door. The customer usually orders the vault to be delivered and installed. That is, the vault manufacturer not only makes the vault parts, but brings the parts to the construction site and puts them together.




Bank vaults are typically made with steel-reinforced concrete. This material was not substantially different from that used in construction work. It relied on its immense thickness for strength. An ordinary vault from the middle of the 20th century might have been 18 in (45.72 cm) thick and was quite heavy and difficult to remove or remodel around. Modern bank vaults are now typically made of modular concrete panels using a special proprietary blend of concrete and additives for extreme strength. The concrete has been engineered for maximum crush resistance. A panel of this material, though only 3 in (7.62 cm) thick, may be up to 10 times as strong as an 18 in-thick (45.72-cm) panel of regular formula concrete.




There are at least two public examples of vaults withstanding a nuclear blast.  The most famous is the Teikoku Bank in [[Atomic bombings of Hiroshima and Nagasaki|Hiroshima]] whose two [[Mosler Safe Company]] vaults survived the atomic blast with all contents intact.  The bank manager wrote a congratulatory note to Mosler.{{cite web|title=Letters of Note: Your Products are Stronger than the Atomic Bomb | url=http://www.lettersofnote.com/2010/09/safe.html |accessdate=16 September 2010| archiveurl= http://web.archive.org/web/20100919151038/http://www.lettersofnote.com/2010/09/safe.html| archivedate= 19 September 2010 | deadurl= no}}{{cite web|title=Unbreakable: Hiroshima and the Mosler Safe Company | url= http://conelrad.blogspot.com/2010/08/unbreakable-hiroshima-and-mosler-safe.html |publisher=CONELRAD Adjacent |accessdate=26 August 2010}}  A second is a vault at the [[Nevada National Security Site]] (formerly the Nevada Test Site) in which an above ground Mosler vault was one of many structures specifically constructed to be exposed to an atomic blast.{{cite web|title=A Nuclear Family Vacation| url=http://www.slate.com/id/2122382/entry/2122387/ |publisher=Slate Magazine |accessdate=11 July 2005| archiveurl= http://web.archive.org/web/20050713012637/http://www.slate.com/id/2122382/entry/2122387/| archivedate= 13 July 2005 | deadurl= no}}{{cite web|title=Slate's Well-Traveled: A Nuclear Family Vacation | url=http://www.npr.org/templates/story/story.php?storyId=4755708 |publisher=NPR |accessdate=15 July 2005}}




==Manufacturing process==




===Panels===


The wall panels are molded first using a special [[reinforced concrete]] mix. In addition to the usual cement powder, stone, etc., additional materials such as metal shavings or abrasive materials may be added to resist drilling penetration of the slab.   Unlike regular concrete used in construction, the concrete for bank vaults is so thick that it cannot be poured. The consistency of concrete is measured by its "[[Concrete Slump Test|slump]]." Vault concrete has zero slump. It also sets very quickly, curing in only six to 12 hours, instead of the three to four days needed for most concrete.{{cite web|title=Discovery Channel (UK) How Do They Do It? (Season 3 / Episode 7 / Part 2) Diebold Vault Construction (Youtube)|url=http://www.youtube.com/watch?v=oefNi2iNFEo|accessdate=28 December 2010}}{{cite web|title=Hercvlite Vault Panels | url=http://www.vaultstructures.com/hercvlite.php|accessdate=28 December 2010}}


*A network of reinforcing steel rods are manually placed into the damp mix.


*The molds are vibrated for several hours. The vibration settles the material and eliminates air pockets.


*The edges are smoothed with a trowel, and the concrete is allowed to harden.


*The panels are removed from the mold and placed on a truck for transport to the customer's construction site.




===Door===


The vault door is also molded of special concrete used to make the panels, but it can be made in several ways. The door mold differs from the panel molds because there is a hole for the lock and the door will be clad in stainless steel. Some manufacturers use the steel cladding as the mold and pour the concrete directly into it. Other manufacturers use a regular mold and screw the steel on after the panel is dry.




Round vault doors were popular in the early 20th century and are iconic images for a bank's high security.  They fell out of favor due to manufacturing complexities, maintenance issues (door sag due to weight) and cost, but a few examples are still available.{{cite web|title=Vault Structure Inc. Round Vault Doors | url=http://www.vaultstructures.com/round.php|accessdate=28 December 2010}}{{cite web|title=VSI 360 Round Vault Door | url=http://fspa1.com/pdf/Round_Vault_Door.pdf|accessdate=28 December 2010}}




A day gate is a second door inside the main vault door frame used for limited vault protection while the main door is open.  It is often made of open metal mesh or glass and is intended to keep a casual visitor out rather than to provide true security.{{cite web|title=Installation Instructions for Overly GSA Class 5 Vault Door|url=http://www.overly.com/door/tech/docs/ins-gsaCL5.pdf|publisher=Overly Door Company|accessdate=28 December 2010}}




===Lock===


A vault door, much like the smaller burglary safe door, is secured with numerous massive metal bolts (cylinders) extending from the door into the surrounding frame.  Holding those bolts in place is some sort of lock.  The lock is invariably mounted on the inside (behind) of the difficult to penetrate door and is usually very modest in size and strength, but very difficult to gain access to from the outside.  There are many types of lock mechanisms in use:


*A [[combination lock]] similar in principle to that of a padlock or safe door is very common.  This is usually a mechanical device but products incorporating both mechanical and electronic mechanisms are available, making certain safe cracking techniques very difficult.{{cite web|title=Kaba-MAS X-09 and CDX-09 High Security Locks|url=http://www.kaba-mas.com/pdf/brochures/x_09.pdf|pages=8|format=PDF|date=Dec 2010}}


*High security key locks are used in a few vault doors.{{cite news|title=The Untold Story of the World's Biggest Diamond Heist|url=http://www.wired.com/politics/law/magazine/17-04/ff_diamonds?currentPage=all|publisher=Wired Magazine|accessdate=3 December 2009|date=12 March 2009| archiveurl= http://web.archive.org/web/20091108121455/http://www.wired.com/politics/law/magazine/17-04/ff_diamonds?currentPage=all| archivedate= 8 November 2009 | deadurl= no}}


*A dual control (dual custody) combination lock has two dials controlling two locking mechanisms for the door.  They are usually configured so that both locks must be dialed open at the same time for the door to be unlocked.  No single person is given both combinations, requiring two people to cooperate to open the door. Some doors may be configured so that either dial will unlock the door, trading off increased convenience for lessened security.


*A [[time lock]] is a clock that prevents the vault's door from opening until a specified number of hours have passed. This is still the "theft proof" lock system that Sargent invented in the late nineteenth century. Such locks are manufactured by only a few companies worldwide. The locking system is supplied to the vault manufacturer preassembled.


* Many [[safe-cracking]] techniques also apply to the locking mechanism of the vault door.  They may be complicated by the sheer thickness and strength of the door and panel.




===Installation===


*The finished vault panels, door, and lock assembly are transported to the bank construction site. The vault manufacturer's workers then place the panels enclosed in steel at the designated spots and weld them together. The vault manufacturer may also supply an alarm system, which is installed at the same time. While older vaults employed various weapons against burglars, such as blasts of steam or teargas, modern vaults instead use technological countermeasures. They can be wired with a listening device that picks up unusual sounds, or observed with a [[CCTV|camera]]. An alarm is often present to alert local police if the door or lock is tampered with.




==Performance standards==




[[Quality control]] for much of the world's vault industry is overseen by [[Underwriters Laboratories|Underwriters Laboratories, Inc.]] (UL), in Northbrook, Illinois. Until 1991, the United States government also regulated the vault industry. The government set minimum standards for the thickness of vault walls, but advances in concrete technology made thickness an arbitrary measure of strength. Thin panels of new materials were far stronger than the thicker, poured concrete walls. Now the effectiveness of the vault is measured by how well it performs against a mock break-in. Manufacturers also do their own testing designing a new product to make sure it is likely to succeed in UL trials.{{cite web|title=UL 608 Burglary Resistant Vault Doors and Modular Panels | url=http://ulstandardsinfonet.ul.com/scopes/scopes.asp?fn=0608.html |publisher=Underwriter's Laboratories | accessdate=30 Oct 2012}}  Key points include:


*It is based on using "common hand tools, picking tools, mechanical or portable electric tools, grinding points carbide drills, pressure applying devices or mechanisms, abrasive cutting wheels, power saws, coring tools, impact tools, fluxing rods, and oxy-fuel gas cutting torches". 


*A breach is a hole in the door or wall of at least 96 square inches (6 × 16 in (15.24 × 40.64 cm)) or breaking locking bolts to allow the door to open. 


*Considers only the time actually spent working (excludes setup, rests, etc.) 


*Does not cover attacks with a [[thermal lance]] or explosives. 


*UL-608 makes no claims as to the fire resistance of the vault. 


*Applies to the door and all sides.


*The lock, ventilation, alarms, etc. are covered by other UL standards.




{| class="wikitable"


|-


!Rating


!Time to Breach Vault


|-


|Class M


|15 minutes


|-


|Class I


|30 minutes


|-


|Class II


|60 minutes


|-


|Class III


|120 minutes


|-


|}




==Byproducts/waste==




The manufacturing process itself has no unusual waste or byproducts, but getting rid of old bank vaults can be a problem. Newer, modular bank vaults can be moved if a bank closes or relocates. They can also be enlarged if the bank's needs change. Older bank vaults are quite difficult to demolish. If an old bank building is to be renovated for another use, in most cases a specialty contractor has to be called in to demolish the vault. A vault's demolition requires massive wrecking equipment and may take months of work at a large expense. At least one company in the United States refurbishes old vault doors that are then resold.




In some cases, the new owner of a former bank building will opt to use the vault. There are cases where, for example, a bank building was renovated into a pub, which then used the vault as a secure storeroom for its liquor supply.




==Future==




Bank vault technology changed rapidly in the 1980s and 1990s with the development of improved concrete material. Bank burglaries are also no longer the substantial problem they were in the late nineteenth century up through the 1930s, but vault makers continue to alter their products to counter new break-in methods.




An issue in the twenty-first century is the [[thermal lance]]. Burning iron rods in pure oxygen ignited by an oxyacetylene torch, it can produce temperatures of 6,600–8,000 °F (3,650–4,430 °C). The thermal lance user bores a series of small holes that can eventually be linked to form a gap. Vault manufacturers work closely with the banking industry and law enforcement in order to keep up with such advances in burglary.




==References==


{{Reflist|30em}}




==Further reading==




=== Books ===


* Steele, Sean P., ''Heists: Swindles, Stickups, and Robberies that Shocked the World.'' New York: Metrobooks, 1995. ISBN 1-56799-170-X.


* Tchudi, Stephen, ''Lock & Key: The Secrets of Locking Things Up, In, and Out.'' New York: Charles Scribner's Sons, 1993. ISBN 0-684-19363-9.




=== Periodicals ===


* Chiles, James R., [http://www.accessmylibrary.com/coms2/summary_0286-5449843_ITM "Age-Old Battle to Keep Safes Safe from 'Creepers, Soup Men and Yeggs"]. ''[[Smithsonian (magazine)|Smithsonian]]'' (July 1984): 35–44.


* Merrick, Amy, [http://www.brownsafe.com/categories/press/press_article_2007_WSJournal.html "Immovable Objects, If They're Bank Vaults, Make Nice Restaurants"]. ''[[The Wall Street Journal]]'' (5 February 2001): Al.


{{Use dmy dates|date=March 2012}}




==External links==


{{Commons category|Bank vaults}}


* [http://www.cmi-gold-silver.com/blog/15-impenetrable-bank-vaults "15 Most Impenetrable Bank Vaults"], accessed 28 December 2010.


* [http://www.madehow.com/Volume-7/Bank-Vault.html "Bank Vault (madehow.com)"], accessed 28 December 2010.


* [http://www.fas.org/irp/doddir/army/ar380-5/v.htm "AR 380-5 Chapter V Safekeeping and Storage"], U.S. DOD standard for secret material storage displayed by Federation of American Scientists, accessed 28 December 2010.


* [https://portal.navfac.navy.mil/portal/page/portal/NAVFAC/NAVFAC_WW_PP/NAVFAC_NFESC_PP/LOCKS/PDF_FILES/X-09_Operating_Instructions.pdf "Operating Instruction for the X-09 Type 1F High Security Electronic Lock"], U.S. Naval Facilities Engineering Command, accessed 28 December 2010.






[[File:Placeholder|video|right|300px]] [[File:Placeholder|right|300px]]
A Time-Vault is a fictional device or structure,used to preserve or store items for safe keeping,existing within the .

==Type One Time-Vault ==

A '''bank vault''' (or '''strongroom''') is a secure space where money, valuables, records, and documents can be stored,outside of time and space. It is intended to protect their contents from theft, unauthorized use, fire, natural disasters, and other threats, just like a [[safe]]. But unlike safes, vaults are an integral part of the building within which they are built, using armored walls and a tightly fashioned door closed with a complex [[Lock (device)|lock]].Generally,they have size limitations,but act and function in a similar to small,scaled down [[New Genisis Bunkers]]

==Type Two Time-Vault==
A '''bank vault''' (or '''strongroom''') is a secure space where money, valuables, records,equiptment and documents can be stored,outside of time and space. It is intended to protect their contents from theft, unauthorized use, fire, natural disasters, and other threats, just like a [[safe]]. But unlike safes, vaults are an integral part of the building within which they are built, using armored walls and a tightly fashioned door closed with a complex [[Lock (device)|lock]].Generally,they have size limitations,but act and function in a similar to small,scaled down [[New Genisis Bunkers]],just like Type One Time-Vaults.The diffecences,Type Two Time-Vault also not apart of a building,but can built as the buildings themselves.
These Type Two Time-Vaults became sort  scaled down version of[[New Genisis Bunkers]],to be used store more various items and equiptment,but to be uses a safehouse or bases of operations,for various groups or individuals.


==Type Three Time-Vault==

a kind of huge Time-Vault,used to secure space where money, valuables, records,equiptment and documents can be stored,outside of time and space,too dangerous to allowed out among the populas.

== '''Features''' ==

Separate security towers and administration building; main citadel (security staging areas, administrative offices); self-contained cells in subterranean levels, each cell has reconfigurable walls for differentiated accomodation; isolation pit/cells; self-contained nuclear power facility.

Several eons ago, the United Kingdoms of Atlantis tried to solve the problem of incarcerating superhuman criminals and extraterrestrial lifeforms,to dangerous to allowed freedom by creating the maximum security prison termed “the Vault.” It had many advantages over more conventional prisons, as it contained multiple subterranean levels, was constructed from near-impervious materials such as either Atlanteanor  steel, and used various power-dampening devices. An additional factor in the Vault’s early success was the fact that its location, deep within the Rocky Mountains of Colorado, was kept top secret from all but the most necessary personnel and government officials.
In the beginning, the Vault lived up to its expectations, becoming an effective internment for superhuman criminals. Most villains feared the Vault’s reputation as an “inescapable” prison, partly because it was so shrouded in secret. However, many would attempt to break out of the Vault, particularly Venom. His most notable attempted break-out occurred during the tenure of the warden Truman Marsh. Marsh had instituted a number of hard-line policies against the inmates, and Venom was able to recruit a veritable army in hopes of escaping. However, Marsh clamped down on the entire facility, setting a bomb to detonate rather than allow any to escape. The Avengers and Freedom Force combined their efforts to break into the prison, subdue the inmates, and defuse the bomb. Unfortunately, Marsh was killed by Venom in the process





{{Redirect|Strongroom|the 1962 British crime drama|Strongroom (film)}}

[[File:WinonaSavingsBankVault.JPG|thumb|300px|Large door to an old [[Diebold]] bank vault. On the right is the back side of the open door. To the right of the door's center are two linked lock mechanism boxes for the dual combination dials.  To the left of the door's center is a timelock with its four movements.]]

A '''bank vault''' (or '''strongroom''') is a secure space where money, valuables, records, and documents can be stored. It is intended to protect their contents from theft, unauthorized use, fire, natural disasters, and other threats, just like a [[safe]]. But unlike safes, vaults are an integral part of the building within which they are built, using armored walls and a tightly fashioned door closed with a complex [[Lock (device)|lock]].

Historically, strongrooms were built in the [[basement]] of a bank where the ceilings were [[Vault (architecture)|vaulted]], hence the name. Modern bank vaults typically contain many [[safe deposit box]]es, as well as places for teller cash drawers, and other valuable assets of the bank or its customers. They are also common in other buildings where valuables are kept such as post offices, grand hotels, rare book libraries and certain government ministries.

Vault technology developed in a type of arms race with bank robbers. As [[burglar]]s came up with new ways to break into vaults, vault makers found innovative ways to foil them. Modern vaults may be armed with a wide array of alarms and anti-theft devices. Some nineteenth and early twentieth century vaults were built so well that today they are almost impossible to destroy. These older vaults were typically made with [[Reinforced concrete|steel-reinforced concrete]]. The walls were usually at least 1 ft (0.3 m) thick, and the door itself was typically 3.5 ft (1.1 m) thick. Total weight ran into the hundreds of tons. Today vaults are made with thinner, lighter materials that, while still secure, are easier to dismantle than their earlier counterparts.

==History==
[[File:Bank vault 1901.jpg|thumb|left|200px|Strongroom from 1901]]

The need for secure storage stretches far back in time. The earliest known locks were made by the [[Ancient Egypt|Egyptians]]. [[Ancient Rome|Ancient Romans]] used a more sophisticated locking system, called [[warded lock]]s. Warded locks had special notches and grooves that made picking them more difficult. Lock technology advanced independently in ancient [[India]], [[Ancient Russia|Russia]], and [[History of China#Ancient China|China]], where the [[combination lock]] is thought to have originated. In the United States, most banks relied on small iron [[safe]]s fitted with a key lock up until the middle of the nineteenth century. After the [[California Gold Rush|Gold Rush]] of 1849, unsuccessful [[Prospecting|prospector]]s turned to robbing banks. The prospectors would often break into the bank using a pickax and hammer. The safe was usually small enough that the thief could get it out a window, and take it to a secluded spot to break it open.

Banks demanded more protection and safe makers responded by designing larger, heavier safes. Safes with a key lock were still vulnerable through the key hole, and bank robbers soon learned to blast off the door by pouring explosives in this opening. In 1861, inventor [[Linus Yale Jr.]] introduced the modern combination lock. Bankers quickly adopted [[Yale (company)|Yale]]'s lock for their safes, but bank robbers came up with several ways to get past the new invention. It was possible to use force to punch the combination lock through the door. Other experienced burglars learned to drill holes into the lock case and use mirrors to view the slots in the combination wheels inside the mechanism. A more direct approach was to simply kidnap the bank manager and force him to reveal the combination.

After the inventions of the combination lock, James Sargent—an employee of Yale—developed the "theft proof lock." This was a combination lock that worked on a timer. The vault or safe door could only be opened after a set number of hours had passed, thus a kidnapped bank employee could not open the lock in the middle of the night even under force. [[Time lock]]s became widespread at banks in the 1870s. This reduced the kidnappings, but set bank robbers to work again at prying or blasting open vaults. Thieves developed tools for forcing open a tiny crack between the vault door and frame. As the crack widened, the thieves levered the door open or poured in gunpowder and blasted it off. Vault makers responded with a series of stair-stepped grooves in the door frame so the door could not be levered open. But these grooves proved ideal for a new weapon: liquid [[nitroglycerin]]. Professional bank robbers learned to boil [[dynamite]] in a kettle of water and skim the nitroglycerin off the top. They could drip this volatile liquid into the door grooves and destroy the door. Vault makers subsequently redesigned their doors so they closed with a thick, smooth, tapered plug. The plug fit so tightly that there was no room for the nitroglycerin.

By the 1920s, most banks avoided using safes and instead turned to gigantic, heavy vaults with walls and doors several feet thick. These were meant to withstand not only robbers but also angry mobs and natural disasters. Despite the new security measures, these vaults were still vulnerable to yet another new invention, the [[cutting torch]]. Burning oxygen and [[acetylene]] gas at about {{convert|6000|°F|°C|-2}}, the torch could easily cut through steel. It was in use as early as 1907, but became widespread with World War I. Robbers used cutting torches in over 200 bank robberies in 1924 alone. Manufacturers learned to sandwich a copper alloy into vault doors. If heated, the high thermal conductivity of copper dissipates the heat to prevent melting or burning. After this design improvement, bank burglaries fell off and were far less common at the end of the 1920s than at the beginning of the decade.

Technology continues in the race with bank robbers, coming up with new devices such as [[heat sensor]]s, [[motion detector]]s, and alarms. Bank robbers have in turn developed even more technological tools to find ways around these systems. Although the number of bank robberies has been cut dramatically, they are still attempted.

Materials used in vaults and vault doors have changed as well. The earlier vaults had steel doors, but because these could easily be cut by torches, different materials were tried. Massive cast iron doors had more resistance to acetylene torches than steel. The modern preferred vault door material is actually the same concrete as used in the vault wall panels. It is usually clad in steel for cosmetic reasons.

==Design==
[[File:TIFF Image File0003.TIF|thumb|200px|Vault of a retail bank under demolition.]]
Bank vaults are built as custom orders. The vault is usually the first aspect of a new bank building to be designed and built. The manufacturing process begins with the design of the vault, and the rest of the bank is built around it. The vault manufacturer consults with the customer to determine factors such as the total vault size, desired shape, and location of the door. After the customer signs off on the design, the manufacturer configures the equipment to make the vault panels and door. The customer usually orders the vault to be delivered and installed. That is, the vault manufacturer not only makes the vault parts, but brings the parts to the construction site and puts them together.

Bank vaults are typically made with steel-reinforced concrete. This material was not substantially different from that used in construction work. It relied on its immense thickness for strength. An ordinary vault from the middle of the 20th century might have been 18 in (45.72 cm) thick and was quite heavy and difficult to remove or remodel around. Modern bank vaults are now typically made of modular concrete panels using a special proprietary blend of concrete and additives for extreme strength. The concrete has been engineered for maximum crush resistance. A panel of this material, though only 3 in (7.62 cm) thick, may be up to 10 times as strong as an 18 in-thick (45.72-cm) panel of regular formula concrete.

There are at least two public examples of vaults withstanding a nuclear blast.  The most famous is the Teikoku Bank in [[Atomic bombings of Hiroshima and Nagasaki|Hiroshima]] whose two [[Mosler Safe Company]] vaults survived the atomic blast with all contents intact.  The bank manager wrote a congratulatory note to Mosler.{{cite web|title=Letters of Note: Your Products are Stronger than the Atomic Bomb | url=http://www.lettersofnote.com/2010/09/safe.html |accessdate=16 September 2010| archiveurl= http://web.archive.org/web/20100919151038/http://www.lettersofnote.com/2010/09/safe.html| archivedate= 19 September 2010 | deadurl= no}}{{cite web|title=Unbreakable: Hiroshima and the Mosler Safe Company | url= http://conelrad.blogspot.com/2010/08/unbreakable-hiroshima-and-mosler-safe.html |publisher=CONELRAD Adjacent |accessdate=26 August 2010}}  A second is a vault at the [[Nevada National Security Site]] (formerly the Nevada Test Site) in which an above ground Mosler vault was one of many structures specifically constructed to be exposed to an atomic blast.{{cite web|title=A Nuclear Family Vacation| url=http://www.slate.com/id/2122382/entry/2122387/ |publisher=Slate Magazine |accessdate=11 July 2005| archiveurl= http://web.archive.org/web/20050713012637/http://www.slate.com/id/2122382/entry/2122387/| archivedate= 13 July 2005 | deadurl= no}}{{cite web|title=Slate's Well-Traveled: A Nuclear Family Vacation | url=http://www.npr.org/templates/story/story.php?storyId=4755708 |publisher=NPR |accessdate=15 July 2005}}

==Manufacturing process==

===Panels===
The wall panels are molded first using a special [[reinforced concrete]] mix. In addition to the usual cement powder, stone, etc., additional materials such as metal shavings or abrasive materials may be added to resist drilling penetration of the slab.   Unlike regular concrete used in construction, the concrete for bank vaults is so thick that it cannot be poured. The consistency of concrete is measured by its "[[Concrete Slump Test|slump]]." Vault concrete has zero slump. It also sets very quickly, curing in only six to 12 hours, instead of the three to four days needed for most concrete.{{cite web|title=Discovery Channel (UK) How Do They Do It? (Season 3 / Episode 7 / Part 2) Diebold Vault Construction (Youtube)|url=http://www.youtube.com/watch?v=oefNi2iNFEo|accessdate=28 December 2010}}{{cite web|title=Hercvlite Vault Panels | url=http://www.vaultstructures.com/hercvlite.php|accessdate=28 December 2010}}
*A network of reinforcing steel rods are manually placed into the damp mix.
*The molds are vibrated for several hours. The vibration settles the material and eliminates air pockets.
*The edges are smoothed with a trowel, and the concrete is allowed to harden.
*The panels are removed from the mold and placed on a truck for transport to the customer's construction site.

===Door===
The vault door is also molded of special concrete used to make the panels, but it can be made in several ways. The door mold differs from the panel molds because there is a hole for the lock and the door will be clad in stainless steel. Some manufacturers use the steel cladding as the mold and pour the concrete directly into it. Other manufacturers use a regular mold and screw the steel on after the panel is dry.

Round vault doors were popular in the early 20th century and are iconic images for a bank's high security.  They fell out of favor due to manufacturing complexities, maintenance issues (door sag due to weight) and cost, but a few examples are still available.{{cite web|title=Vault Structure Inc. Round Vault Doors | url=http://www.vaultstructures.com/round.php|accessdate=28 December 2010}}{{cite web|title=VSI 360 Round Vault Door | url=http://fspa1.com/pdf/Round_Vault_Door.pdf|accessdate=28 December 2010}}

A day gate is a second door inside the main vault door frame used for limited vault protection while the main door is open.  It is often made of open metal mesh or glass and is intended to keep a casual visitor out rather than to provide true security.{{cite web|title=Installation Instructions for Overly GSA Class 5 Vault Door|url=http://www.overly.com/door/tech/docs/ins-gsaCL5.pdf|publisher=Overly Door Company|accessdate=28 December 2010}}

===Lock===
A vault door, much like the smaller burglary safe door, is secured with numerous massive metal bolts (cylinders) extending from the door into the surrounding frame.  Holding those bolts in place is some sort of lock.  The lock is invariably mounted on the inside (behind) of the difficult to penetrate door and is usually very modest in size and strength, but very difficult to gain access to from the outside.  There are many types of lock mechanisms in use:
*A [[combination lock]] similar in principle to that of a padlock or safe door is very common.  This is usually a mechanical device but products incorporating both mechanical and electronic mechanisms are available, making certain safe cracking techniques very difficult.{{cite web|title=Kaba-MAS X-09 and CDX-09 High Security Locks|url=http://www.kaba-mas.com/pdf/brochures/x_09.pdf|pages=8|format=PDF|date=Dec 2010}}
*High security key locks are used in a few vault doors.{{cite news|title=The Untold Story of the World's Biggest Diamond Heist|url=http://www.wired.com/politics/law/magazine/17-04/ff_diamonds?currentPage=all|publisher=Wired Magazine|accessdate=3 December 2009|date=12 March 2009| archiveurl= http://web.archive.org/web/20091108121455/http://www.wired.com/politics/law/magazine/17-04/ff_diamonds?currentPage=all| archivedate= 8 November 2009 | deadurl= no}}
*A dual control (dual custody) combination lock has two dials controlling two locking mechanisms for the door.  They are usually configured so that both locks must be dialed open at the same time for the door to be unlocked.  No single person is given both combinations, requiring two people to cooperate to open the door. Some doors may be configured so that either dial will unlock the door, trading off increased convenience for lessened security.
*A [[time lock]] is a clock that prevents the vault's door from opening until a specified number of hours have passed. This is still the "theft proof" lock system that Sargent invented in the late nineteenth century. Such locks are manufactured by only a few companies worldwide. The locking system is supplied to the vault manufacturer preassembled.
* Many [[safe-cracking]] techniques also apply to the locking mechanism of the vault door.  They may be complicated by the sheer thickness and strength of the door and panel.

===Installation===
*The finished vault panels, door, and lock assembly are transported to the bank construction site. The vault manufacturer's workers then place the panels enclosed in steel at the designated spots and weld them together. The vault manufacturer may also supply an alarm system, which is installed at the same time. While older vaults employed various weapons against burglars, such as blasts of steam or teargas, modern vaults instead use technological countermeasures. They can be wired with a listening device that picks up unusual sounds, or observed with a [[CCTV|camera]]. An alarm is often present to alert local police if the door or lock is tampered with.

==Performance standards==

[[Quality control]] for much of the world's vault industry is overseen by [[Underwriters Laboratories|Underwriters Laboratories, Inc.]] (UL), in Northbrook, Illinois. Until 1991, the United States government also regulated the vault industry. The government set minimum standards for the thickness of vault walls, but advances in concrete technology made thickness an arbitrary measure of strength. Thin panels of new materials were far stronger than the thicker, poured concrete walls. Now the effectiveness of the vault is measured by how well it performs against a mock break-in. Manufacturers also do their own testing designing a new product to make sure it is likely to succeed in UL trials.{{cite web|title=UL 608 Burglary Resistant Vault Doors and Modular Panels | url=http://ulstandardsinfonet.ul.com/scopes/scopes.asp?fn=0608.html |publisher=Underwriter's Laboratories | accessdate=30 Oct 2012}}  Key points include:
*It is based on using "common hand tools, picking tools, mechanical or portable electric tools, grinding points carbide drills, pressure applying devices or mechanisms, abrasive cutting wheels, power saws, coring tools, impact tools, fluxing rods, and oxy-fuel gas cutting torches".
*A breach is a hole in the door or wall of at least 96 square inches (6 × 16 in (15.24 × 40.64 cm)) or breaking locking bolts to allow the door to open.
*Considers only the time actually spent working (excludes setup, rests, etc.)
*Does not cover attacks with a [[thermal lance]] or explosives.
*UL-608 makes no claims as to the fire resistance of the vault.
*Applies to the door and all sides.
*The lock, ventilation, alarms, etc. are covered by other UL standards.

{| class="wikitable"
|-
!Rating
!Time to Breach Vault
|-
|Class M
|15 minutes
|-
|Class I
|30 minutes
|-
|Class II
|60 minutes
|-
|Class III
|120 minutes
|-
|}

==Byproducts/waste==

The manufacturing process itself has no unusual waste or byproducts, but getting rid of old bank vaults can be a problem. Newer, modular bank vaults can be moved if a bank closes or relocates. They can also be enlarged if the bank's needs change. Older bank vaults are quite difficult to demolish. If an old bank building is to be renovated for another use, in most cases a specialty contractor has to be called in to demolish the vault. A vault's demolition requires massive wrecking equipment and may take months of work at a large expense. At least one company in the United States refurbishes old vault doors that are then resold.

In some cases, the new owner of a former bank building will opt to use the vault. There are cases where, for example, a bank building was renovated into a pub, which then used the vault as a secure storeroom for its liquor supply.

==Future==

Bank vault technology changed rapidly in the 1980s and 1990s with the development of improved concrete material. Bank burglaries are also no longer the substantial problem they were in the late nineteenth century up through the 1930s, but vault makers continue to alter their products to counter new break-in methods.

An issue in the twenty-first century is the [[thermal lance]]. Burning iron rods in pure oxygen ignited by an oxyacetylene torch, it can produce temperatures of 6,600–8,000 °F (3,650–4,430 °C). The thermal lance user bores a series of small holes that can eventually be linked to form a gap. Vault manufacturers work closely with the banking industry and law enforcement in order to keep up with such advances in burglary.

==References==
{{Reflist|30em}}

==Further reading==

=== Books ===
* Steele, Sean P., ''Heists: Swindles, Stickups, and Robberies that Shocked the World.'' New York: Metrobooks, 1995. ISBN 1-56799-170-X.
* Tchudi, Stephen, ''Lock & Key: The Secrets of Locking Things Up, In, and Out.'' New York: Charles Scribner's Sons, 1993. ISBN 0-684-19363-9.

=== Periodicals ===
* Chiles, James R., [http://www.accessmylibrary.com/coms2/summary_0286-5449843_ITM "Age-Old Battle to Keep Safes Safe from 'Creepers, Soup Men and Yeggs"]. ''[[Smithsonian (magazine)|Smithsonian]]'' (July 1984): 35–44.
* Merrick, Amy, [http://www.brownsafe.com/categories/press/press_article_2007_WSJournal.html "Immovable Objects, If They're Bank Vaults, Make Nice Restaurants"]. ''[[The Wall Street Journal]]'' (5 February 2001): Al.
{{Use dmy dates|date=March 2012}}

==External links==
{{Commons category|Bank vaults}}
* [http://www.cmi-gold-silver.com/blog/15-impenetrable-bank-vaults "15 Most Impenetrable Bank Vaults"], accessed 28 December 2010.
* [http://www.madehow.com/Volume-7/Bank-Vault.html "Bank Vault (madehow.com)"], accessed 28 December 2010.
* [http://www.fas.org/irp/doddir/army/ar380-5/v.htm "AR 380-5 Chapter V Safekeeping and Storage"], U.S. DOD standard for secret material storage displayed by Federation of American Scientists, accessed 28 December 2010.
* [https://portal.navfac.navy.mil/portal/page/portal/NAVFAC/NAVFAC_WW_PP/NAVFAC_NFESC_PP/LOCKS/PDF_FILES/X-09_Operating_Instructions.pdf "Operating Instruction for the X-09 Type 1F High Security Electronic Lock"], U.S. Naval Facilities Engineering Command, accessed 28 December 2010.

No comments: